2023-09-29 20:25:17 -04:00

487 lines
15 KiB
GLSL

/*
CRT-interlaced
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
(cgwg gave their consent to have the original version of this shader
distributed under the GPL in this message:
http://board.byuu.org/viewtopic.php?p=26075#p26075
"Feel free to distribute my shaders under the GPL. After all, the
barrel distortion code was taken from the Curvature shader, which is
under the GPL."
)
This shader variant is pre-configured with screen curvature
*/
#pragma parameter CRTgamma "CRTGeom Target Gamma" 2.4 0.1 5.0 0.1
#pragma parameter monitorgamma "CRTGeom Monitor Gamma" 2.2 0.1 5.0 0.1
#pragma parameter d "CRTGeom Distance" 1.6 0.1 3.0 0.1
#pragma parameter CURVATURE "CRTGeom Curvature Toggle" 1.0 0.0 1.0 1.0
#pragma parameter R "CRTGeom Curvature Radius" 2.0 0.1 10.0 0.1
#pragma parameter cornersize "CRTGeom Corner Size" 0.03 0.001 1.0 0.005
#pragma parameter cornersmooth "CRTGeom Corner Smoothness" 1000.0 80.0 2000.0 100.0
#pragma parameter x_tilt "CRTGeom Horizontal Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter y_tilt "CRTGeom Vertical Tilt" 0.0 -0.5 0.5 0.05
#pragma parameter overscan_x "CRTGeom Horiz. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter overscan_y "CRTGeom Vert. Overscan %" 100.0 -125.0 125.0 1.0
#pragma parameter DOTMASK "CRTGeom Dot Mask Toggle" 0.3 0.0 0.3 0.3
#pragma parameter SHARPER "CRTGeom Sharpness" 1.0 1.0 3.0 1.0
#pragma parameter scanline_weight "CRTGeom Scanline Weight" 0.3 0.1 0.5 0.05
#pragma parameter lum "CRTGeom Luminance" 0.0 0.0 1.0 0.01
#pragma parameter interlace_detect "CRTGeom Interlacing Simulation" 1.0 0.0 1.0 1.0
#ifndef PARAMETER_UNIFORM
#define CRTgamma 2.4
#define monitorgamma 2.2
#define d 1.6
#define CURVATURE 1.0
#define R 2.0
#define cornersize 0.03
#define cornersmooth 1000.0
#define x_tilt 0.0
#define y_tilt 0.0
#define overscan_x 100.0
#define overscan_y 100.0
#define DOTMASK 0.3
#define SHARPER 1.0
#define scanline_weight 0.3
#define lum 0.0
#define interlace_detect 1.0
#endif
#if defined(VERTEX)
#if __VERSION__ >= 130
#define COMPAT_VARYING out
#define COMPAT_ATTRIBUTE in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define COMPAT_ATTRIBUTE attribute
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
COMPAT_ATTRIBUTE vec4 VertexCoord;
COMPAT_ATTRIBUTE vec4 COLOR;
COMPAT_ATTRIBUTE vec4 TexCoord;
COMPAT_VARYING vec4 COL0;
COMPAT_VARYING vec4 TEX0;
vec4 _oPosition1;
uniform mat4 MVPMatrix;
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
COMPAT_VARYING vec2 overscan;
COMPAT_VARYING vec2 aspect;
COMPAT_VARYING vec3 stretch;
COMPAT_VARYING vec2 sinangle;
COMPAT_VARYING vec2 cosangle;
COMPAT_VARYING vec2 one;
COMPAT_VARYING float mod_factor;
COMPAT_VARYING vec2 ilfac;
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CRTgamma;
uniform COMPAT_PRECISION float monitorgamma;
uniform COMPAT_PRECISION float d;
uniform COMPAT_PRECISION float CURVATURE;
uniform COMPAT_PRECISION float R;
uniform COMPAT_PRECISION float cornersize;
uniform COMPAT_PRECISION float cornersmooth;
uniform COMPAT_PRECISION float x_tilt;
uniform COMPAT_PRECISION float y_tilt;
uniform COMPAT_PRECISION float overscan_x;
uniform COMPAT_PRECISION float overscan_y;
uniform COMPAT_PRECISION float DOTMASK;
uniform COMPAT_PRECISION float SHARPER;
uniform COMPAT_PRECISION float scanline_weight;
uniform COMPAT_PRECISION float lum;
uniform COMPAT_PRECISION float interlace_detect;
#endif
#define FIX(c) max(abs(c), 1e-5);
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = R*acos(a);
return uv*r/sin(r/R);
}
vec2 fwtrans(vec2 uv)
{
float r = FIX(sqrt(dot(uv,uv)));
uv *= sin(r/R)/r;
float x = 1.0-cos(r/R);
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
return d*(uv*cosangle-x*sinangle)/D;
}
vec3 maxscale()
{
vec2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y));
vec2 a = vec2(0.5,0.5)*aspect;
vec2 lo = vec2(fwtrans(vec2(-a.x,c.y)).x, fwtrans(vec2(c.x,-a.y)).y)/aspect;
vec2 hi = vec2(fwtrans(vec2(+a.x,c.y)).x, fwtrans(vec2(c.x,+a.y)).y)/aspect;
return vec3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
}
void main()
{
// START of parameters
// gamma of simulated CRT
// CRTgamma = 1.8;
// gamma of display monitor (typically 2.2 is correct)
// monitorgamma = 2.2;
// overscan (e.g. 1.02 for 2% overscan)
overscan = vec2(1.00,1.00);
// aspect ratio
aspect = vec2(1.0, 0.75);
// lengths are measured in units of (approximately) the width
// of the monitor simulated distance from viewer to monitor
// d = 2.0;
// radius of curvature
// R = 1.5;
// tilt angle in radians
// (behavior might be a bit wrong if both components are
// nonzero)
const vec2 angle = vec2(0.0,0.0);
// size of curved corners
// cornersize = 0.03;
// border smoothness parameter
// decrease if borders are too aliased
// cornersmooth = 1000.0;
// END of parameters
vec4 _oColor;
vec2 _otexCoord;
gl_Position = VertexCoord.x * MVPMatrix[0] + VertexCoord.y * MVPMatrix[1] + VertexCoord.z * MVPMatrix[2] + VertexCoord.w * MVPMatrix[3];
_oPosition1 = gl_Position;
_oColor = COLOR;
_otexCoord = TexCoord.xy;
COL0 = COLOR;
TEX0.xy = TexCoord.xy;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
sinangle = sin(vec2(x_tilt, y_tilt)) + vec2(0.001);//sin(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3)));
cosangle = cos(vec2(x_tilt, y_tilt)) + vec2(0.001);//cos(vec2(max(abs(x_tilt), 1e-3), max(abs(y_tilt), 1e-3)));
stretch = maxscale();
ilfac = vec2(1.0,clamp(floor(InputSize.y/200.0), 1.0, 2.0));
// The size of one texel, in texture-coordinates.
vec2 sharpTextureSize = vec2(SHARPER * TextureSize.x, TextureSize.y);
one = ilfac / sharpTextureSize;
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = TexCoord.x * TextureSize.x * OutputSize.x / InputSize.x;
}
#elif defined(FRAGMENT)
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
out vec4 FragColor;
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
struct output_dummy {
vec4 _color;
};
uniform COMPAT_PRECISION int FrameDirection;
uniform COMPAT_PRECISION int FrameCount;
uniform COMPAT_PRECISION vec2 OutputSize;
uniform COMPAT_PRECISION vec2 TextureSize;
uniform COMPAT_PRECISION vec2 InputSize;
uniform sampler2D Texture;
COMPAT_VARYING vec4 TEX0;
// Comment the next line to disable interpolation in linear gamma (and
// gain speed).
#define LINEAR_PROCESSING
// Enable screen curvature.
// #define CURVATURE
// Enable 3x oversampling of the beam profile
#define OVERSAMPLE
// Use the older, purely gaussian beam profile
//#define USEGAUSSIAN
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#define PI 3.141592653589
#ifdef LINEAR_PROCESSING
# define TEX2D(c) pow(COMPAT_TEXTURE(Texture, (c)), vec4(CRTgamma))
#else
# define TEX2D(c) COMPAT_TEXTURE(Texture, (c))
#endif
COMPAT_VARYING vec2 one;
COMPAT_VARYING float mod_factor;
COMPAT_VARYING vec2 ilfac;
COMPAT_VARYING vec2 overscan;
COMPAT_VARYING vec2 aspect;
COMPAT_VARYING vec3 stretch;
COMPAT_VARYING vec2 sinangle;
COMPAT_VARYING vec2 cosangle;
#ifdef PARAMETER_UNIFORM
uniform COMPAT_PRECISION float CRTgamma;
uniform COMPAT_PRECISION float monitorgamma;
uniform COMPAT_PRECISION float d;
uniform COMPAT_PRECISION float CURVATURE;
uniform COMPAT_PRECISION float R;
uniform COMPAT_PRECISION float cornersize;
uniform COMPAT_PRECISION float cornersmooth;
uniform COMPAT_PRECISION float x_tilt;
uniform COMPAT_PRECISION float y_tilt;
uniform COMPAT_PRECISION float overscan_x;
uniform COMPAT_PRECISION float overscan_y;
uniform COMPAT_PRECISION float DOTMASK;
uniform COMPAT_PRECISION float SHARPER;
uniform COMPAT_PRECISION float scanline_weight;
uniform COMPAT_PRECISION float lum;
uniform COMPAT_PRECISION float interlace_detect;
#endif
float intersect(vec2 xy)
{
float A = dot(xy,xy)+d*d;
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
}
vec2 bkwtrans(vec2 xy)
{
float c = intersect(xy);
vec2 point = vec2(c)*xy;
point -= vec2(-R)*sinangle;
point /= vec2(R);
vec2 tang = sinangle/cosangle;
vec2 poc = point/cosangle;
float A = dot(tang,tang)+1.0;
float B = -2.0*dot(poc,tang);
float C = dot(poc,poc)-1.0;
float a = (-B+sqrt(B*B-4.0*A*C))/(2.0*A);
vec2 uv = (point-a*sinangle)/cosangle;
float r = FIX(R*acos(a));
return uv*r/sin(r/R);
}
vec2 transform(vec2 coord)
{
coord *= TextureSize / InputSize;
coord = (coord-vec2(0.5))*aspect*stretch.z+stretch.xy;
return (bkwtrans(coord)/vec2(overscan_x / 100.0, overscan_y / 100.0)/aspect+vec2(0.5)) * InputSize / TextureSize;
}
float corner(vec2 coord)
{
coord *= TextureSize / InputSize;
coord = (coord - vec2(0.5)) * vec2(overscan_x / 100.0, overscan_y / 100.0) + vec2(0.5);
coord = min(coord, vec2(1.0)-coord) * aspect;
vec2 cdist = vec2(cornersize);
coord = (cdist - min(coord,cdist));
float dist = sqrt(dot(coord,coord));
return clamp((cdist.x-dist)*cornersmooth,0.0, 1.0);
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// "wid" controls the width of the scanline beam, for each RGB
// channel The "weights" lines basically specify the formula
// that gives you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
#ifdef USEGAUSSIAN
vec4 wid = 0.3 + 0.1 * pow(color, vec4(3.0));
vec4 weights = vec4(distance / wid);
return (lum + 0.4) * exp(-weights * weights) / wid;
#else
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
vec4 weights = vec4(distance / scanline_weight);
return (lum + 1.4) * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
#endif
}
void main()
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Texture coordinates of the texel containing the active pixel.
vec2 xy = (CURVATURE > 0.5) ? transform(TEX0.xy) : TEX0.xy;
float cval = corner(xy);
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
vec2 ilvec = vec2(0.0,ilfac.y * interlace_detect > 1.5 ? mod(float(FrameCount),2.0) : 0.0);
vec2 ratio_scale = (xy * TextureSize - vec2(0.5) + ilvec)/ilfac;
#ifdef OVERSAMPLE
float filter_ = InputSize.y/OutputSize.y;//fwidth(ratio_scale.y);
#endif
vec2 uv_ratio = fract(ratio_scale);
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale)*ilfac + vec2(0.5) - ilvec) / TextureSize;
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
vec4 coeffs = PI * vec4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Normalize.
coeffs /= dot(coeffs, vec4(1.0));
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
vec4 col = clamp(mat4(
TEX2D(xy + vec2(-one.x, 0.0)),
TEX2D(xy),
TEX2D(xy + vec2(one.x, 0.0)),
TEX2D(xy + vec2(2.0 * one.x, 0.0))) * coeffs,
0.0, 1.0);
vec4 col2 = clamp(mat4(
TEX2D(xy + vec2(-one.x, one.y)),
TEX2D(xy + vec2(0.0, one.y)),
TEX2D(xy + one),
TEX2D(xy + vec2(2.0 * one.x, one.y))) * coeffs,
0.0, 1.0);
#ifndef LINEAR_PROCESSING
col = pow(col , vec4(CRTgamma));
col2 = pow(col2, vec4(CRTgamma));
#endif
// Calculate the influence of the current and next scanlines on
// the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col);
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#ifdef OVERSAMPLE
uv_ratio.y =uv_ratio.y+1.0/3.0*filter_;
weights = (weights+scanlineWeights(uv_ratio.y, col))/3.0;
weights2=(weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2))/3.0;
uv_ratio.y =uv_ratio.y-2.0/3.0*filter_;
weights=weights+scanlineWeights(abs(uv_ratio.y), col)/3.0;
weights2=weights2+scanlineWeights(abs(1.0-uv_ratio.y), col2)/3.0;
#endif
vec3 mul_res = (col * weights + col2 * weights2).rgb * vec3(cval);
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
vec3 dotMaskWeights = mix(
vec3(1.0, 1.0 - DOTMASK, 1.0),
vec3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
floor(mod(mod_factor, 2.0))
);
mul_res *= dotMaskWeights;
// Convert the image gamma for display on our output device.
mul_res = pow(mul_res, vec3(1.0 / monitorgamma));
// Color the texel.
output_dummy _OUT;
_OUT._color = vec4(mul_res, 1.0);
FragColor = _OUT._color;
return;
}
#endif